• Jump to content
  • Jump to navigation
  • Jump to bottom of page
Simulate organization breadcrumb open Simulate organization breadcrumb close
QuCoLiMa – Quantum Cooperativity of Light and Matter
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Collaborative Research Centres and Transregios
  • JGU Mainz
  • UdS Saarbrücken
  1. Friedrich-Alexander-Universität
  2. Collaborative Research Centres and Transregios

QuCoLiMa – Quantum Cooperativity of Light and Matter

Navigation Navigation close
  • Team
    • Steering Committee
    • Project leaders
    • Administration
    • Contact
    Portal Team
  • Research
    • Area A: Quantum cooperativity induced by measurement processes
    • Area B: Quantum cooperativity of collective degrees of freedom
    • Area C: Quantum cooperativity induced by interactions
    • Area D: Pushing the limits of quantum cooperativity
    • Service project Z02: Quantum simulation methods for cooperative effects in strongly correlated light-matter systems
    • Equipment
    • Publications
    Portal Research
  • Events
    • Upcoming Events
    • QuCoLiMa Talks
    • Meetings
    • Events calendar
    • Subscription
    Portal Events
  • Diversity & Equality
    • Equality
    • Family and work
    • Early career support
    • DivE-Q Events & News
    • Master’s Fellowship for Female Students
    • QuCoLiMa’s Female Scientist of the Quarter
    • Diversity and Equality Committee
    Portal Diversity & Equality
  • RTG (Dr.)
    • Benefits
    • Application
    • RTG Administration
    • Doctoral Researchers
    • Organization
    Portal RTG (Dr.)
  1. Home
  2. Research
  3. Area D: Pushing the limits of quantum cooperativity
  4. D06 – Entangling collective behavior of quantum materials and quantum light

D06 – Entangling collective behavior of quantum materials and quantum light

In page navigation: Research
  • Area A: Quantum cooperativity induced by measurement processes
    • A01 – Cooperative light emission and spatio-temporal photon correlations from trapped ion arrays
    • A02 – Generation of photonic cluster states from color center-cavity systems
    • A03 – Correlated x-ray photons for incoherent diffraction imaging
    • A04 – Spatio-temporal correlations of electrons emitted from femtosecond laserdriven needle sources
    • A05 – Cooperative effects of a defined number of organic molecules embedded in a dielectric antenna
    • A06 – Tailor-made beyond-one-excitation quantum states for quantum information and communication
  • Area B: Quantum cooperativity of collective degrees of freedom
    • B01 – Collective quantum dynamics of structural- and spin-defects in ion crystals
    • B02 – Levitated ferrimagnetic particles in hollow-core photonic crystal fibres
    • B03 – Point defects in silicon carbide: Towards a platform for the coupling of light, spin and mechanics
    • B04 – Opto-mechanical lasing mechanisms in cold atoms
    • B05 – Optomagnomechanical Arrays
  • Area C: Quantum cooperativity induced by interactions
    • C01 – One-dimensional photon-mediated cooperativity of quantum emitters
    • C02 – Light-induced correlations in dense atomic media
    • C03 – Mechanical and chemical control of single and multiphoton emission
    • C04 – X-ray Photonic Structures for Control of Cooperative Emission from Resonant Nuclei
    • C05 – Quantum cooperative helical metafilms for producing nonclassical light
  • Area D: Pushing the limits of quantum cooperativity
    • D01 – Cooperative effects in coupled quantum emitter systems
    • D02 – Spatio-temporal structures in interacting spin systems
    • D03 – Competing interactions in strongly correlated light-matter assemblies
    • D04 – Synchronising quantum spins with long-range dissipation
    • D05 – Quantum Cooperativity and Synchronization
    • D06 – Entangling collective behavior of quantum materials and quantum light
  • Service project Z02: Quantum simulation methods for cooperative effects in strongly correlated light-matter systems
  • Equipment
  • Publications

D06 – Entangling collective behavior of quantum materials and quantum light

Summary

Condensed matter systems provide a paradigm platform for collective quantum behavior, where intriguing states of matter arise from the interaction between a macroscopic number of degrees of freedom. In this theory project, we aim to develop a microscopic theoretical framework, based on using non-equilibrium Green’s functions and quantum embedding theories, to explore the intriguing possibilities which arise when macroscopic properties of materials are controlled by the quantum electromagnetic field and vice versa. In exploring this direction, project D06 will merge ideas of quantum optics with the rapidly evolving field of classical light-induced phenomena in solids.

Project Leaders

Martin Eckstein

Martin Eckstein

Project leader D06

Friedrich-Alexander-Universität Erlangen-Nürnberg

Staudtstraße 7
91058 Erlangen
  • Phone number: +49 9131 85 28224
  • Email: martin.eckstein@fau.de
More › Details for Martin Eckstein

Publications

No publications found.

 

Friedrich-Alexander-Universität Erlangen-Nürnberg
Johannes Gutenberg-Universität Mainz

Universität des Saarlandes Saarbrücken

  • Imprint
  • Privacy
  • Accessibility
  • Intern
Up