• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
QuCoLiMa – Quantum Cooperativity of Light and Matter
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Collaborative Research Centres and Transregios
  • JGU Mainz
  • UdS Saarbrücken
  1. Friedrich-Alexander-Universität
  2. Collaborative Research Centres and Transregios

QuCoLiMa – Quantum Cooperativity of Light and Matter

Navigation Navigation close
  • Team
    • Steering Committee
    • Project leaders
    • Administration
    • Contact
    Portal Team
  • Research
    • Area A: Quantum cooperativity induced by measurement processes
    • Area B: Quantum cooperativity of collective degrees of freedom
    • Area C: Quantum cooperativity induced by interactions
    • Area D: Pushing the limits of quantum cooperativity
    • Service project Z02: Quantum simulation methods for cooperative effects in strongly correlated light-matter systems
    • Equipment
    • Publications
    Portal Research
  • Events
    • Upcoming Events
    • QuCoLiMa Talks
    • Meetings
    • QuCoLiMa Topical Days
    • Events calendar
    • Subscription
    Portal Events
  • Diversity & Equality
    • Equality
    • Family and work
    • Early career support
    • DivE-Q Events & News
    • Master’s Fellowship for Female Students
    • QuCoLiMa’s Female Scientists
    • Diversity and Equality Committee
    Portal Diversity & Equality
  • RTG (Dr.)
    • Benefits
    • Application
    • RTG Administration
    • Doctoral Researchers
    • RTG Events
    • Internal
    Portal RTG (Dr.)
  1. Home
  2. Research
  3. Area D: Pushing the limits of quantum cooperativity

Area D: Pushing the limits of quantum cooperativity

In page navigation: Research
  • Area A: Quantum cooperativity induced by measurement processes
    • A01 – Cooperative light emission and spatio-temporal photon correlations from trapped ion arrays
    • A02 – Generation of photonic cluster states from color center-cavity systems
    • A03 – Correlated x-ray photons for incoherent diffraction imaging
    • A04 – Spatio-temporal correlations of electrons emitted from femtosecond laserdriven needle sources
    • A05 – Cooperative effects of a defined number of organic molecules embedded in a dielectric antenna
    • A06 – Tailor-made beyond-one-excitation quantum states for quantum information and communication
  • Area B: Quantum cooperativity of collective degrees of freedom
    • B01 – Collective quantum dynamics of structural- and spin-defects in ion crystals
    • B02 – Levitated ferrimagnetic particles in hollow-core photonic crystal fibres
    • B03 – Point defects in silicon carbide: Towards a platform for the coupling of light, spin and mechanics
    • B04 – Opto-mechanical lasing mechanisms in cold atoms
    • B05 – Optomagnomechanical Arrays
  • Area C: Quantum cooperativity induced by interactions
    • C01 – One-dimensional photon-mediated cooperativity of quantum emitters
    • C02 – Light-induced correlations in dense atomic media
    • C03 – Mechanical and chemical control of single and multiphoton emission
    • C04 – X-ray Photonic Structures for Control of Cooperative Emission from Resonant Nuclei
    • C05 – Quantum cooperative helical metafilms for producing nonclassical light
  • Area D: Pushing the limits of quantum cooperativity
    • D01 – Cooperative effects in coupled quantum emitter systems
    • D02 – Spatio-temporal structures in interacting spin systems
    • D03 – Competing interactions in strongly correlated light-matter assemblies
    • D04 – Synchronising quantum spins with long-range dissipation
    • D05 – Quantum Cooperativity and Synchronization
    • D06 – Entangling collective behavior of quantum materials and quantum light
  • Service project Z02: Quantum simulation methods for cooperative effects in strongly correlated light-matter systems
  • Equipment
  • Publications

Area D: Pushing the limits of quantum cooperativity

Summary of the area

The projects of Area D target to identify the foundational principles of quantum cooperative behavior. The purpose is to set the ground for a comprehensive theory that will permit to define what is quantum cooperativity in its generality, when a physical system can exhibit quantum cooperativity, how cooperativity can be designed, and which experimental setups are most promising for observing quantum cooperative behavior at the mesoscopic scale. The quantum cooperative dynamics, which are the platforms of these theoretical studies include superradiance, quantum synchronization, and quantum critical behavior in driven-dissipative systems. Projects in area D serve as pathfinder beyond the first funding period, both for exploring future experimental situations and setups, where novel cooperative effects may be prepared and studied, but also for guiding the eye for future theory projects and a more complete embedding of cooperativity in the framework of complex open manybody systems.

Projects

  • D01 – Cooperative effects in coupled quantum emitter systems
  • D02 – Spatio-temporal structures in interacting spin systems
  • D03 – Competing interactions in strongly correlated light-matter assemblies
  • D04 – Synchronising quantum spins with long-range dissipation
  • D05 – Quantum Cooperativity and Synchronization
  • D06 – Entangling collective behavior of quantum materials and quantum light

Publications

2022

  • Aiello A.:
    One more time on the helicity decomposition of spin and orbital optical currents
    In: Journal of Physics A: Mathematical and Theoretical 55 (2022), Article No.: 244004
    ISSN: 1751-8113
    DOI: 10.1088/1751-8121/ac6d8f
  • Aiello A., Hu XB., Rodriguez-Fajardo V., Forbes A., Hernandez-Aranda R., Perez-Garcia B., Rosales-Guzman C.:
    A non-separability measure for spatially disjoint vectorial fields
    In: New Journal of Physics 24 (2022)
    ISSN: 1367-2630
    DOI: 10.1088/1367-2630/ac77ab
  • Jaeger SB., Schmit T., Morigi G., Holland MJ., Betzholz R.:
    Lindblad Master Equations for Quantum Systems Coupled to Dissipative Bosonic Modes
    In: Physical Review Letters 129 (2022), Article No.: 063601
    ISSN: 0031-9007
    DOI: 10.1103/PhysRevLett.129.063601
  • Kraus R., Chanda T., Zakrzewski J., Morigi G.:
    Quantum phases of dipolar bosons in one-dimensional optical lattices
    In: Physical Review B 106 (2022), Article No.: 035144
    ISSN: 0163-1829
    DOI: 10.1103/PhysRevB.106.035144
  • Lambert MR., Tsai SW., Kelly SP.:
    Quantum memory at an eigenstate phase transition in a weakly chaotic model
    In: Physical Review A 106 (2022), Article No.: 012206
    ISSN: 1050-2947
    DOI: 10.1103/PhysRevA.106.012206
  • Li J., Schamriß L., Eckstein M.:
    Effective theory of lattice electrons strongly coupled to quantum electromagnetic fields
    In: Physical Review B 105 (2022), Article No.: 165121
    ISSN: 0163-1829
    DOI: 10.1103/PhysRevB.105.165121
  • Marino J.:
    Universality Class of Ising Critical States with Long-Range Losses
    In: Physical Review Letters 129 (2022), Article No.: 050603
    ISSN: 0031-9007
    DOI: 10.1103/PhysRevLett.129.050603
  • Ney PM., Notarnicola S., Montangero S., Morigi G.:
    Entanglement in the quantum Game of Life
    In: Physical Review A 105 (2022), Article No.: 012416
    ISSN: 1050-2947
    DOI: 10.1103/PhysRevA.105.012416
  • Reitz M., Sommer C., Genes C.:
    Cooperative Quantum Phenomena in Light-Matter Platforms
    In: PRX Quantum 3 (2022)
    ISSN: 2691-3399
    DOI: 10.1103/PRXQuantum.3.010201
  • Schamriss L., Lenke L., Mühlhauser M., Schmidt KP.:
    Quantum phase transitions in the K-layer Ising toric code
    In: Physical Review B 105 (2022)
    ISSN: 0163-1829
    DOI: 10.1103/PhysRevB.105.184425
  • Seetharam K., Lerose A., Fazio R., Marino J.:
    Dynamical scaling of correlations generated by short- and long-range dissipation
    In: Physical Review B 105 (2022), Article No.: 184305
    ISSN: 0163-1829
    DOI: 10.1103/PhysRevB.105.184305

2021

  • Folz F., Mehlhorn K., Morigi G.:
    Interplay of periodic dynamics and noise: Insights from a simple adaptive system
    In: Physical Review E 104 (2021)
    ISSN: 2470-0045
    DOI: 10.1103/PhysRevE.104.054215
  • Gohsrich J., Shah T., Aiello A.:
    Perturbation theory of nearly spherical dielectric optical resonators
    In: Physical Review A 104 (2021)
    ISSN: 1050-2947
    DOI: 10.1103/PhysRevA.104.023516
  • Kelly SP., Rey AM., Marino J.:
    Effect of Active Photons on Dynamical Frustration in Cavity QED
    In: Physical Review Letters 126 (2021), Article No.: 133603
    ISSN: 0031-9007
    DOI: 10.1103/PhysRevLett.126.133603
  • Koziol J., Langheld A., Kapfer S., Schmidt KP.:
    Quantum-critical properties of the long-range transverse-field Ising model from quantum Monte Carlo simulations
    In: Physical Review B 103 (2021)
    ISSN: 0163-1829
    DOI: 10.1103/PhysRevB.103.245135
  • Kubala P., Sierant P., Morigi G., Zakrzewski J.:
    Ergodicity breaking with long-range cavity-induced quasiperiodic interactions
    In: Physical Review B 103 (2021), Article No.: 174208
    ISSN: 0163-1829
    DOI: 10.1103/PhysRevB.103.174208
  • Lenke L., Mühlhauser M., Schmidt KP.:
    High-order series expansion of non-Hermitian quantum spin models
    In: Physical Review B 104 (2021), Article No.: 195137
    ISSN: 0163-1829
    DOI: 10.1103/PhysRevB.104.195137
  • Schmit T., Giannelli L., Sorensen AS., Morigi G.:
    Retrieval of single photons from solid-state quantum transducers
    In: Physical Review A 104 (2021), Article No.: 062607
    ISSN: 1050-2947
    DOI: 10.1103/PhysRevA.104.062607
Friedrich-Alexander-Universität Erlangen-Nürnberg
Johannes Gutenberg-Universität Mainz

Universität des Saarlandes Saarbrücken

  • Imprint
  • Privacy
  • Accessibility
  • Intern
Up