• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
QuCoLiMa – Quantum Cooperativity of Light and Matter
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Collaborative Research Centres and Transregios
  • JGU Mainz
  • UdS Saarbrücken
  1. Friedrich-Alexander-Universität
  2. Collaborative Research Centres and Transregios

QuCoLiMa – Quantum Cooperativity of Light and Matter

Navigation Navigation close
  • Team
    • Steering Committee
    • Project leaders
    • Administration
    • Contact
    Portal Team
  • Research
    • Area A: Quantum cooperativity induced by measurement processes
    • Area B: Quantum cooperativity of collective degrees of freedom
    • Area C: Quantum cooperativity induced by interactions
    • Area D: Pushing the limits of quantum cooperativity
    • Service project Z02: Quantum simulation methods for cooperative effects in strongly correlated light-matter systems
    • Equipment
    • Publications
    Portal Research
  • Events
    • Upcoming Events
    • QuCoLiMa Talks
    • Meetings
    • QuCoLiMa Topical Days
    • Events calendar
    • Subscription
    Portal Events
  • Diversity & Equality
    • Equality
    • Family and work
    • Early career support
    • DivE-Q Events & News
    • Master’s Fellowship for Female Students
    • QuCoLiMa’s Female Scientists
    • Diversity and Equality Committee
    Portal Diversity & Equality
  • RTG (Dr.)
    • Benefits
    • Application
    • RTG Administration
    • Doctoral Researchers
    • RTG Events
    • Internal
    Portal RTG (Dr.)
  1. Home
  2. Research
  3. Area C: Quantum cooperativity induced by interactions

Area C: Quantum cooperativity induced by interactions

In page navigation: Research
  • Area A: Quantum cooperativity induced by measurement processes
    • A01 – Cooperative light emission and spatio-temporal photon correlations from trapped ion arrays
    • A02 – Generation of photonic cluster states from color center-cavity systems
    • A03 – Correlated x-ray photons for incoherent diffraction imaging
    • A04 – Spatio-temporal correlations of electrons emitted from femtosecond laserdriven needle sources
    • A05 – Cooperative effects of a defined number of organic molecules embedded in a dielectric antenna
    • A06 – Tailor-made beyond-one-excitation quantum states for quantum information and communication
  • Area B: Quantum cooperativity of collective degrees of freedom
    • B01 – Collective quantum dynamics of structural- and spin-defects in ion crystals
    • B02 – Levitated ferrimagnetic particles in hollow-core photonic crystal fibres
    • B03 – Point defects in silicon carbide: Towards a platform for the coupling of light, spin and mechanics
    • B04 – Opto-mechanical lasing mechanisms in cold atoms
    • B05 – Optomagnomechanical Arrays
  • Area C: Quantum cooperativity induced by interactions
    • C01 – One-dimensional photon-mediated cooperativity of quantum emitters
    • C02 – Light-induced correlations in dense atomic media
    • C03 – Mechanical and chemical control of single and multiphoton emission
    • C04 – X-ray Photonic Structures for Control of Cooperative Emission from Resonant Nuclei
    • C05 – Quantum cooperative helical metafilms for producing nonclassical light
  • Area D: Pushing the limits of quantum cooperativity
    • D01 – Cooperative effects in coupled quantum emitter systems
    • D02 – Spatio-temporal structures in interacting spin systems
    • D03 – Competing interactions in strongly correlated light-matter assemblies
    • D04 – Synchronising quantum spins with long-range dissipation
    • D05 – Quantum Cooperativity and Synchronization
    • D06 – Entangling collective behavior of quantum materials and quantum light
  • Service project Z02: Quantum simulation methods for cooperative effects in strongly correlated light-matter systems
  • Equipment
  • Publications

Area C: Quantum cooperativity induced by interactions

Summary of the area

Research Area C embraces projects where the interactions between the individual constituents are engineered. This includes the exchange of photons and a direct matter-matter coupling by quasi static electric and/or magnetic interactions. The cooperative response is then observed in the spatiotemporal structure of the emitted electromagnetic radiation. The corresponding signatures of cooperative behavior are the observation of super- and subradiant emission, the onset of spatio-temporal photon correlations including the emission of non-classical light. Research Area C investigates furthermore the impact of different dimensionalities, geometries, in the presence of disorder, and of the boundary conditions on the cooperative behavior of its platforms. In particular, structuring of media, control of thermal fluctuations and control of the coupling to the environment allows for a detailed analysis of the impact of noise, fluctuations, and dissipation on the cooperative response of the systems.

Projects

  • C01 – One-dimensional photon-mediated cooperativity of quantum emitters
  • C02 – Light-induced correlations in dense atomic media
  • C03 – Mechanical and chemical control of single and multiphoton emission
  • C04 – X-ray Photonic Structures for Control of Cooperative Emission from Resonant Nuclei
  • C05 – Quantum cooperative helical metafilms for producing nonclassical light

Publications

2022

  • Hauschildt SJ., Wu Z., Uersfeld D., Schmid P., Goetz C., Engel V., Engels B., Muellen K., Basche T.:
    Excitation localization in a trimeric perylenediimide macrocycle: Synthesis, theory, and single molecule spectroscopy
    In: Journal of Chemical Physics 156 (2022), Article No.: 044304
    ISSN: 0021-9606
    DOI: 10.1063/5.0077676
  • Santiago Cruz T., Gennaro SD., Mitrofanov O., Addamane S., Reno J., Brener I., Chekhova M.:
    Resonant metasurfaces for generating complex quantum states
    In: Science 377 (2022), p. 991-995
    ISSN: 0036-8075
    DOI: 10.1126/science.abq8684
  • Sultanov V., Santiago Cruz T., Chekhova M.:
    Flat-optics generation of broadband photon pairs with tunable polarization entanglement
    In: Optics Letters 47 (2022), p. 3872-3875
    ISSN: 0146-9592
    DOI: 10.1364/OL.458133

2021

  • Andrejic P., Pálffy A.:
    Superradiance and anomalous hyperfine splitting in inhomogeneous ensembles
    In: Physical Review A 104 (2021)
    ISSN: 1050-2947
    DOI: 10.1103/PhysRevA.104.033702
  • Bitsch M., Boehm AK., Grandjean A., Jung G., Gallei M.:
    Embedding photoacids into polymer opal structures: Synergistic effects on optical and stimuli-responsive features
    In: Molecules 26 (2021), Article No.: 7350
    ISSN: 1420-3049
    DOI: 10.3390/molecules26237350
  • Caridad JM., Tserkezis C., Santos JE., Plochocka P., Venkatesan M., Coey JM., Mortensen NA., Rikken GL., Krstic V.:
    Detection of the Faraday Chiral Anisotropy
    In: Physical Review Letters 126 (2021), Article No.: 177401
    ISSN: 0031-9007
    DOI: 10.1103/PhysRevLett.126.177401
  • Ellrott G., Ogawa S., Uno M., Morita Y., Manoharan M., Kolesnik-Gray M., Krstic V., Mizuta H.:
    Dose-dependent milling efficiencies of helium and nitrogen beams in PMMA
    In: Microelectronic Engineering 249 (2021), Article No.: 111621
    ISSN: 0167-9317
    DOI: 10.1016/j.mee.2021.111621
  • Santiago-Cruz T., Fedotova A., Sultanov V., Weissflog MA., Arslan D., Younesi M., Pertsch T., Staude I., Setzpfandt F., Chekhova M.:
    Photon Pairs from Resonant Metasurfaces
    In: Nano Letters (2021)
    ISSN: 1530-6984
    DOI: 10.1021/acs.nanolett.1c01125
Friedrich-Alexander-Universität Erlangen-Nürnberg
Johannes Gutenberg-Universität Mainz

Universität des Saarlandes Saarbrücken

  • Imprint
  • Privacy
  • Accessibility
  • Intern
Up