• Jump to content
  • Jump to navigation
  • Jump to bottom of page
Simulate organization breadcrumb open Simulate organization breadcrumb close
QuCoLiMa – Quantum Cooperativity of Light and Matter
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Collaborative Research Centres and Transregios
  • JGU Mainz
  • UdS Saarbrücken
  1. Friedrich-Alexander-Universität
  2. Collaborative Research Centres and Transregios

QuCoLiMa – Quantum Cooperativity of Light and Matter

Navigation Navigation close
  • Team
    • Steering Committee
    • Project leaders
    • Administration
    • Contact
    Portal Team
  • Research
    • Area A: Quantum cooperativity induced by measurement processes
    • Area B: Quantum cooperativity of collective degrees of freedom
    • Area C: Quantum cooperativity induced by interactions
    • Area D: Pushing the limits of quantum cooperativity
    • Service project Z02: Quantum simulation methods for cooperative effects in strongly correlated light-matter systems
    • Equipment
    • Publications
    Portal Research
  • Events
    • Upcoming Events
    • QuCoLiMa Talks
    • Meetings
    • Events calendar
    • Subscription
    Portal Events
  • Diversity & Equality
    • Equality
    • Family and work
    • Early career support
    • DivE-Q Events & News
    • Master’s Fellowship for Female Students
    • QuCoLiMa’s Female Scientist of the Quarter
    • Diversity and Equality Committee
    Portal Diversity & Equality
  • RTG (Dr.)
    • Benefits
    • Application
    • RTG Administration
    • Doctoral Researchers
    • Organization
    Portal RTG (Dr.)
  1. Home
  2. Research
  3. Area A: Quantum cooperativity induced by measurement processes
  4. A02 – Generation of photonic cluster states from color center-cavity systems

A02 – Generation of photonic cluster states from color center-cavity systems

In page navigation: Research
  • Area A: Quantum cooperativity induced by measurement processes
    • A01 – Cooperative light emission and spatio-temporal photon correlations from trapped ion arrays
    • A02 – Generation of photonic cluster states from color center-cavity systems
    • A03 – Correlated x-ray photons for incoherent diffraction imaging
    • A04 – Spatio-temporal correlations of electrons emitted from femtosecond laserdriven needle sources
    • A05 – Cooperative effects of a defined number of organic molecules embedded in a dielectric antenna
    • A06 – Tailor-made beyond-one-excitation quantum states for quantum information and communication
  • Area B: Quantum cooperativity of collective degrees of freedom
    • B01 – Collective quantum dynamics of structural- and spin-defects in ion crystals
    • B02 – Levitated ferrimagnetic particles in hollow-core photonic crystal fibres
    • B03 – Point defects in silicon carbide: Towards a platform for the coupling of light, spin and mechanics
    • B04 – Opto-mechanical lasing mechanisms in cold atoms
    • B05 – Optomagnomechanical Arrays
  • Area C: Quantum cooperativity induced by interactions
    • C01 – One-dimensional photon-mediated cooperativity of quantum emitters
    • C02 – Light-induced correlations in dense atomic media
    • C03 – Mechanical and chemical control of single and multiphoton emission
    • C04 – X-ray Photonic Structures for Control of Cooperative Emission from Resonant Nuclei
    • C05 – Quantum cooperative helical metafilms for producing nonclassical light
  • Area D: Pushing the limits of quantum cooperativity
    • D01 – Cooperative effects in coupled quantum emitter systems
    • D02 – Spatio-temporal structures in interacting spin systems
    • D03 – Competing interactions in strongly correlated light-matter assemblies
    • D04 – Synchronising quantum spins with long-range dissipation
    • D05 – Quantum Cooperativity and Synchronization
    • D06 – Entangling collective behavior of quantum materials and quantum light
  • Service project Z02: Quantum simulation methods for cooperative effects in strongly correlated light-matter systems
  • Equipment
  • Publications

A02 – Generation of photonic cluster states from color center-cavity systems

Summary

Project A02 focuses on the investigation of highly correlated states of light and matter, here realized as a bottom-up toolbox for light-matter and light-light entanglement. The central basic element consists of an entangled state of a single photon and a single electron spin of an individual defect center in diamond. This basic element will be concatenated in time to create a highly cooperative quantum state of light, i.e., a photonic cluster state. Such a cluster state arises due to the collective coupling of subsequently emitted photons to a common degree of freedom, i.e., the entanglement with the same single electron spin. In a medium-term perspective quantum-cooperative effects will be used to create matter entanglement first and higher dimensional cluster states built from this resource.

Project Leaders

Christoph Becher

Christoph Becher

Project leader A02

Universität des Saarlandes

Campus E2.6
66123 Saarbrücken
  • Phone number: +49 681 302 2466
  • Email: christoph.becher@physik.uni-saarland.de
More › Details for Christoph Becher

Publications

2022

  • Goerlitz J., Herrmann D., Fuchs P., Iwasaki T., Taniguchi T., Rogalla D., Hardeman D., Colard PO., Markham M., Hatano M., Becher C.:
    Coherence of a charge stabilised tin-vacancy spin in diamond
    In: npj Quantum Information 8 (2022), Article No.: 45
    ISSN: 2056-6387
    DOI: 10.1038/s41534-022-00552-0
Friedrich-Alexander-Universität Erlangen-Nürnberg
Johannes Gutenberg-Universität Mainz

Universität des Saarlandes Saarbrücken

  • Imprint
  • Privacy
  • Accessibility
  • Intern
Up